Top-level heading

Silent Atrial Fibrillation ECG Monitor with Artificial inTElligence (SAFE-MATE-ECG)

Nome del progettoSilent Atrial Fibrillation ECG Monitor with Artificial inTElligence  (SAFE-MATE-ECG)
  
Enti/Aziende responsabiliDipartimento di Medicina clinica e molecolare
Dipartimento di Ingegneria dell'informazione, elettronica e telecomunicazioni
AENDUO S.r.l.
  
Obietti del progetto

Atrial fibrillation (AF) is the most common cardiac arrhythmia and a leading cause of ischemic stroke. Several healthcare services relying on remote ECG monitoring have been proposed for real-time detection and diagnosis of silent AF. The goal of this project is to lay down the clinical and technical basis of a wearable ECG recorder provided with novel artificial intelligence-assisted algorithms for the diagnosis of atrial fibrillation.
Primary goals:
1. publication of the results on the performance of the algorithm on public ECG libraries;
2. algorithm validation on a setting of real life Holter-derived ECG traces;
3. development of a prototype of a SAFE MATE ECG device for the diagnosis of AF in the operating environment.

  
Risultati attesiThe project aims at developing algorithms, sensory components, and prototype for AI-based edge computing of ECG diagnostic relevant features and automatic AF detection
  
Risultati raggiunti

The group has developed a novel multi-lead sub-beat ECG-based algorithm for atrial fibrillation detection using machine learning and is finalizing the related edge computing enabled prototype.

Atrial Fibrillation Detection by Multi-Lead ECG Processing at the Edge A. Petroni, F. Cuomo, G. Scarano, P. Francia, S. Colonnese
2021 IEEE Globecom Workshops (GC Wkshps), 1-6

  
Data di inizioJune 2020
  
Durata24 months
  
Costo totale € 405.371,50
  
PartnersUniversity Sapienza
Aenduo S.r.l.
  
Sito webhttps://www.aenduo.com/
  
Attività di divulgazione realizzateSeminar for the Data Science
  
Prodotti divulgativi elaborati (video, audio, pubblicazione, ecc.)A. Petroni, F. Cuomo, G. Scarano, P. Francia and S. Colonnese, “Atrial Fibrillation Detection by Multi-Lead ECG Processing at the Edge,” 2021 IEEE Globecom Workshops (GC Wkshps), 2021, pp. 1-6
  
Responsabili progettoMassimo Volpe, M.D. - DMCM (massimo.volpe@uniroma1.it)
Francesca Cuomo, PhD - DIET (francesca.cuomo@uniroma1.it)
Pietro Francia, M.D. – DMCM (pietro.francia@uniroma1.it)
Stefania Colonnese, PhD – DIET (stefania.colonnese@uniroma1.it)
Marcello Pediconi, ING – Aenduo (marcello.pediconi@aenduo.com)
  
Responsabile comunicazioneAENDUO
E-mail: michelangelo.smeriglio@aenduo.com